Essay

\$\$\$001

Pharmacological properties and toxicity of organic compounds

\$\$\$002

Innovative processes of teaching chemistry at the universityo

\$\$\$003

Modern educational trends

\$\$\$004

The effectiveness of the use of innovative methods in teaching general and inorganic chemistry.

\$\$\$005

Solving environmental problems in teaching chemistry

\$\$\$006

Methods for studying the qualitative and quantitative chemical composition and functional groups in organic compounds.

\$\$\$007

Development of chemical sciences

\$\$\$008

World traditions and modern methods of teaching chemistry

\$\$\$009

Scientific and pedagogical research-the process of forming new pedagogical knowledge

\$\$\$0010

Chemical metals and compounds obtained by electrolysis

Questions

###001

Regularities of the development of chemical science and regularities of knowledge assimilation as a methodological basis for teaching chemistry.

###002

System-structural approaches to the construction of the content of the chemistry course

###003

Individualization and differentiation of chemistry training as a way to implement personality-oriented chemistry training. Methods of differentiation of students ' academic work and tasks in chemistry.

###004

Basic concepts of chemistry and their evolution: atom, chemical element, molecule, chemical compound, structure of matter, chemical reaction. ###005

Concepts of chemical education, new educational paradigms and the main directions of modernization of chemical education.

###006

Formation of the main tasks and goals of teaching inorganic chemistry. ###007

Teaching chemistry as a pedagogical system, its features: goals, content, methods and technologies of teaching, means and forms of organization of the educational process, control of students ' knowledge.

###008

Content and structure of the course of inorganic chemistry. Periodic law of D. I. Mendeleev as a theoretical basis for the construction of inorganic chemistry. ###009

Didactic principles of teaching chemistry: scientific character, accessibility, clarity and consistent complexity of the course content. ###010

The result of the introduction of new material in the educational process. Modern methods and technologies of teaching at the university.

###011

Methods of teaching chemistry as a science and academic discipline in higher education. The place of didactics of chemistry in the system of pedagogical sciences.

###012

A method of teaching inorganic chemistry with the integration of electronic and multimedia systems.

###013

Modern organizational forms of interactive teaching of inorganic chemistry. Evaluation of the effectiveness of teaching inorganic chemistry in the point rating at the intermediate control.

###014

Features of teaching inorganic chemistry in the transition to the credit learning process.

###015

Methods of teaching the main sections of inorganic chemistry.

###016

Describe analytical chemistry as a science

###017

Describe the types of chemical analysis and how they are classified ###018

Describe the modern stage of development of analytical chemistry. ###019

Solution theory in analytical chemistry

###020

Protolytic theory of acids and bases.

###021

Autoprotolysis. Hydrogen and hydroxide parameters pH and pOH ###022

What is called the degree of dissociation of the electrolyte? Give examples of strong and weak electrolytes, and calculate their pH ###023

What is the ion activity coefficient and ionic strength of the solution? ###024

Buffer solutions used in the analysis

###025

Buffer capacity and calculation of the pH of buffer solutions ###026

Hydrolysis of salts. What is the degree of hydrolysis and the hydrolysis constant, calculating the pH of hydrolyzed salts

###027

Complex compounds in chemical analysis. Classification of complex compounds ###028

Stability and instability constants of complex compounds ###029

Oxidation-Reduction (Redox) reactions in chemical analysis. Redox potential, Nernst equation

###030

Give examples of typical oxidizing agents and reducing agents. How does the oxidation state of the elements change during oxidation and reduction? ###031

Chemical equilibrium in heterogeneous systems. The solubility product and solubility

###032

Conditions of precipitation formation in precipitation reactions ###033

The nature of the covalent bond. Electronic effects. Acids and bases ###034

Alkanes. Methods of preparation, chemical properties and application. Mechanism of radical substitution reaction in alkanes (SR). ###035

Cycloalkanes. General formula for cycloalkanes. Types of isomerism. Bayer theory. Methods for obtaining three -, five-and six-part cycles. Chemical properties of alicyclic hydrocarbons.

###036

Stereoisomerism. Spatial structure of organic compounds. Isomerism. Basic principles of Systematic Nomenclature (IUPAC) and Rational Nomenclature. ###037

Alkenes. Methods of preparation, chemical properties and application. Zaitsev's rule. The mechanism of the electrophilic addition reaction (AdE) in alkenes. Markovnikov's rule. The Karash effect. ###038

Alkynes. Methods of preparation, chemical properties and application. Acidic properties of acetylene and its derivatives. Reactions of nucleophilic addition of alkynes. Kucherov's reaction.

###039

Dienes. Methods of obtaining. Structure of 1,3-butadiene. Classification of dienes - cumulated, conjugated, and isolated. 1,2 - and 1,4 – addition reactions. ###040

Halogen derivatives of alkanes. Classification and nomenclature . Methods of preparation, chemical properties.

###041

Organoelement compounds. Organometallic compounds. Structure. Methods of obtaining. Reactions.

###042

Alcohols. Methods of preparation, chemical properties and application. Acid-base properties of alcohols. The reaction of dehydration of alcohols. Zaitsev's rule. ###043

Polyatomic alcohols. Structure and reactions.

###044

Simple ethers. Methods of preparation, structure, and reactions.

###045

Aldehydes and ketones. Electronic structure of the carbonyl group. Methods of obtaining. Physical and chemical properties. Oxidation-reduction reactions. ###046

Carboxylic acids and their derivatives. Synthesis of functional derivatives of carboxylic acids (anhydrides, chlorohydrides, esters, amides). ###047

Saturated carboxylic acids and their derivatives. Electronic structure of the carboxyl group. Nomenclature. Methods of obtaining.

###048

Unsaturated carboxylic acids and their derivatives. Methods of obtaining. Reactions.

###049

Orientation rules in electrophilic aromatic substitution: ortho -, para-orientants (substituents of the first row); meta-orientants (substituents of the second row). ###050

Orientation rules and reactivity of substituted benzenes from the standpoint of the theory of molecular orbitals. Electrophilic substitution in polysubstituted benzenes: consistent and inconsistent orientation; unco-substitution reactions. ###001

Methods of organizing independent work of undergraduates.

###002

Problems of distance learning in inorganic chemistry.

###003

Types of cognitive tasks in chemistry. ###004

Cognitive tasks as an organizational and managerial tool for teaching chemistry. ###005

Methods of teaching general chemistry, their brief description. Classification and grouping of methods used in teaching chemistry. Special methods of teaching chemistry.

###006

General logical and general pedagogical methods in the process of teaching chemistry.

###007

Modern technologies of teaching chemistry. The reasons for the formation and current trends in the development of technologization of chemistry education. ###008

Solving chemical problems as a method of studying chemistry. The role and functions of computational problems in teaching chemistry.

###009

Basic theoretical problems of inorganic chemistry.

###010

Methodological foundations of content integration in the teaching of chemistry. Integrative courses "Natural science" and "General chemistry" in chemical education.

###011

Educational technology, its essence and structure. The focus of educational technologies on the result-the acquisition of new knowledge, the development of skills and key competencies.

###012

Subject and inter-subject connections, their didactic purpose and ways of implementation in the teaching of chemistry.

###013

Chemical reactions of substances in various aggregate states.

###014

Features of designing and conducting chemistry lessons. Solving and composing problems in chemistry.

###015

The project method in teaching inorganic chemistry.

016

Conducting a class on the classification of inorganic substances based on the method of debate.

017

Modern methods of teaching general and inorganic chemistry

018

Factors affecting the solubility of presipitates in precipitation reactions ### 019

Organic reagents used in analytical chemistry

020

Name the areas of use of organic reagents, give examples

021 Separation and concentration methods ### 022 Extraction method. Extraction of organic substances and metal ions ### 023 Qualitative chemical analysis. Fractional and systematic ion analysis ### 024 Classification of cations and anions ### 025 Quantitative analysis. Tasks of quantitative analysis ### 026 Methods for expressing the concentration of solutions ### 027 What is the essence of gravimetric and titrimetric analysis? ### 028 The essence of titrimetric analysis. Basic methods of titrimetric analysis ### 029 Titration methods (direct, reverse, and indirect). Calculations in titrimetric analysis ### 030 Acid-base titration. Acidimetric and alkalimetric titration. ### 031 Indicators of Acid-base titration ### 032 Titration curves and indicator selection in acid-base titration ### 033 Complexometric titration. Complexons ### 034 Sulfonic acids (sulfonic acids). Methods of preparation, chemical properties. ###035 Nitro compounds. Methods of obtaining. Physical and chemical properties. . Konovalov's reaction. ###036 Amines. Primary, secondary, and tertiary amines and chemical properties. ###037 Diaz compounds. Classification and nomenclature. Physical properties and structure. Methods of obtaining. Reactions. ### 038 Heterocyclic compounds. Five-membered heterocyclic compounds. Pirol, furan, thiophene. Physical properties and structure. ### 039 Heterocyclic compounds. Condensed five-membered heterocyclic compounds. Indole. Methods of obtaining. ### 040 Heterocyclic compounds. Six-membered heterocyclic compounds. Pyridine. Methods of obtaining.

###041

Carbohydrates. Monosaccharides. Disaccharides. Polysaccharides. Structure and classification.

###042

Amino acids, peptides, and proteins. Structure and classification.

Methods of obtaining. Chemical properties.

043

Nucleic acids. Structure.

044

Cycloalkanes. Methods of obtaining. Physical properties and structure. ### 045

Cycloalkanes. Types of tension and the nature of connections. Features of the spatial structure of some cycloalkanes. The nature of bonds in cyclopropane. ### 046

Aromatic compounds, aromaticity criteria.

047

Benzene. Structural formula of benzene; conjugation energy; electronic structure of benzene.

048

Rules of aromaticity. Annulenes and their ions: Annulenes; NMR criteria for aromaticity; Aromatic ions; Quantum chemical determination of aromaticity; Graphical method for determining aromaticity.

049

Condensed benzoid hydrocarbons. Non-benzoid aromatic compounds. ### 050

Electrophilic substitution in the aromatic series: the mechanism of electrophilic aromatic substitution reactions. Electrophilic aromatic substitution reactions: benzene halogenation; benzene sulfonation; benzene nitration; Friedel-Crafts alkylation; Friedel-Crafts acylation; arene reactions with other electrophiles. ###001

Discussion of metal chemistry topics ###002

Application of modern methods on the general properties of metals, their distribution in nature, extraction.

###003

Using interactive methods on the topic of Group 1 metals in the periodic table ###004

Implementation of feedback on the chemistry of nonmetals ###005

Conducting the topic of changes in the properties of nonmetals in connection with the position of D. I. Mendeleev in EPG on the basis of a problem situation ###006

General properties of nonmetals, their distribution in nature, the method of critical analysis of the topic ###007

Elements of Group VI. Conducting the topic of oxygen with the help of interactive training ###008 Water. Abnormal properties of water. Using a modular process on the topic of hydrogen peroxide ###009 Elements of group V. Application of the case method on the topic of phosphorus ###011 Application of new methods in the field of nitrogen extraction, physical and chemical properties ###012 Elements of group IV. Carbon. Conducting a discussion on the topic of silicon ###013 Elements of group III. Modern methods of teaching the topic of Boron. ###014 Snowstorm. Using interactive methods on topic karboranov ###015 Features of the use of the case method on the topic of inorganic transformations of circuits ###016 Conducting a description of the elements of group VIII on the basis of problematic questions on the topic. ###017 Modern methods of teaching the subject noble (inert) gases ###018 Indicators of complexometric titration ###019 Complexometric titration curves ###020 Redox titration. Classification of redox titration ###021 Redox titration curves ###022 Applicable indicators of redox titration ###023 Permanganatometry. Preparation and standardization of potassium permanganate ###024 Iodometry. Working solutions. Indicators ###025 Methods of precipitation titration. Argentometry ###026 Precipitation titration curves. Applicable indicators ###027 Gravimetric analysis. Calculations in gravimetric analysis ###028

Method of distillation, separation and deposition in gravimetric analysis ###029

Optical methods of analysis. Bouguer-Lambert-Beer law ###030

Photocolorimetric and spectrophotometric analysis ###031

Electrochemical methods of analysis. Classification. Potentiometry.

###032

Voltammetry. Polarography. Amperometric titration .

###033

Chromatography. Classification of chromatography methods ###034

Gas and liquid chromatography

###035

Alkylbenzenes and alkenbenzenes: nomenclature of benzene derivatives; methods for the preparation of alkylbenzenes; physical properties of alkylbenzene; reactions of alkylbenzene.

###036

Alkenylbenzenes: methods for the production of styrene and its derivatives. Reactions.

###037

Polycyclic aromatic hydrocarbons. Polycyclic arenas with isolated cycles.

Methods for the production of biphenyl derivatives. Structure of biphenyl derivatives. Reactions of biphenyl derivatives.

###038

Condensed benzoid hydrocarbons Production methods. Reactions. ###039

Spectral methods for the identification of organic substances. ###040

Halogenarenes. Classification and nomenclature. Methods of obtaining. Physical properties and structure. Reactions. Nucleophilic halogen substitution in activated haloarenes (SNAr). Nucleophilic halogen substitution in non-activated haloarenes. Nucleophilic halogen substitution catalyzed by copper. ###041

Phenols. Classification and nomenclature. Methods of obtaining. Physical properties and structure. Reactions. Acidity.

###042

Aromatic aldehydes and ketones. Classification and nomenclature. Methods of obtaining. Physical properties and structure. Reactions. Specific properties of aromatic aldehydes.

###043

Aromatic carboxylic acids. Classification and nomenclature. Methods of obtaining. Physical properties and structure. Reactions. ###044

Sulfonic acids. Classification and nomenclature. Methods of obtaining. Physical properties and structure. Reactions. Acidic properties. ###045

Aromatic nitro compounds. Classification and nomenclature. Methods of obtaining. Physical properties and structure. Reactions. CH-acidity. ###046

Aromatic amines. Classification and nomenclature. Methods of obtaining. Physical properties and structure. Reactions. Acid-base properties. Electrophilic substitution in aromatic amines.

###047

Aromatic diazo -, azo-compounds. Classification and nomenclature. Methods of obtaining. Physical properties and structure. Reactions. ###048

Heterocyclic compounds. Classification and nomenclature. Five-membered heterocyclic compounds. Pirol, furan, thiophene.

###049

Six-membered heterocyclic compounds. Pyridine.

###050

Carbohydrates. Monosaccharides. Disaccharides. Polysaccharides